USE OF THE "INTERFACIAL POLYMERIZATION METHOD" FOR THE PREPARATION OF ORGANOTIN ESTERS

MAX FRANKEL, DAVID GERTNER, DANIEL WAGNER* AND ALBERT ZILKHA Department of Organic Chemistry, The Hebrew University, Jerusalem (Israel) (Received November 23rd, 1966)

Various methods have been used for the preparation of organotin esters, such as the reaction of organotin oxides or hydroxides with carboxylic acids or that of organotin halides with organic acid salts. The latter reaction is usually carried out in an inert solvent at reflux temperature¹. It is the purpose of this paper to describe an efficient, low temperature procedure for the synthesis of organotin esters. This method is based on the principle of the interfacial polymerization technique in which two reactive components are brought into reaction at the interface between two

TABLE 1

		·
Acida	M.p. (°C)	Yield (%)
Tributyltin ester	'S	
Succinic	91–3 ^b	89
Adipic	104 ⁶	93
Terephthalic	78 ^b	94
Fumaric	128 ^b	98
Sebacic	100-1*	83.5
Phenylacetic	61-2*	100
Crotonic	81-2*	88.5
Triphenyltin este	ers	
Acetic	120–2°	91.5
Chloroacetic	160–1 ⁴	89
Propionic	122-3°	95
Benzoic	824 ^c	89
Succinic	154–5 ^r	88
Adipic	166-7"	79

TRIBUTYL AND TRIPHENYLTIN ESTERS OF CARBOXYLIC ACIDS

⁴ In case of dicarboxylic acids, the data given are for the diesters. ^b Same m.p. as reported in the literature⁶. ^c Same m.p. as reported in the literature⁷. ^d Previously reported⁸ m.p. 182—3°. Recrystallized from chloroform/ether. (Found: C, 54.10; H, 3.97; Cl, 8.38. $C_{20}H_{17}ClO_2Sn$ calcd.: C, 54.16; H, 3.83; Cl, 7.98%.) ^e Same m.p. as previously reported⁹. ^f Recrystallized from n-propanol. (Found: C, 59.13; H, 4.00; Sn, 29.1. $C_{40}H_{34}O_4Sn_2$ calcd.: C, 58.86; H, 4.16; Sn, 29.1%.) ^g Recrystallized from n-propanol. (Found: C, 59.44; H, 4.50; Sn, 28.2. $C_{42}H_{38}O_4Sn_2$ calcd.: C, 59.75; H, 4.50; Sn, 28.1%.)

^{*} Taken in part from the Ph.D. thesis to be submitted by D. W. to the Senate of the Hebrew University of Jerusalem.

DIALKYLTIN ESTERS OF CARB	OXYLIC ACIDS							
R	M.p. (°C)	Recrystallized from	Yield (%)	%C found (calcd.)	%H found (calcd.)	%N found (calcd.)	%Cl found (calcd.)	%Sn found (calcd.)
$Bu_2Sn(O_2CR)_2$								
Cl, CH ^{4,b}	112-4	Isooctane	88					
p-O ₂ NC ₆ H ₄ ^{4,e}	2189	Benzene	87	46.70	4.47	5.26		20.4
1. 1.				(46.75)	(4.60)	(4.95)		(21.0)
m-O ₂ NC ₆ H ₄ ⁴ . ^e	120-2	Isooctane	84	46.52	4.72	5.10		20.7
				(46.75)	(4.60)	(4.95)		(21.0)
3,5-(NO ₂) ₂ C ₆ H ₃ ^{4,e}	187-8	Benzene	68	40.16	3.89	8.29		18.1
				(40.32)	(3.66)	(8.55)		(18.1)
o-ClC ₆ H ₄ ^{6,4}	84-5	Heptane	83	48.64	4.81		13.54	21.5
				(48.56)	(4.78)		(13.04)	(21.8)
С6Н4-СН(ОН)45	165-6	Methyl ethyl ketone/	100	53.65	5.64			22.0
		petroleum ether		(53.86)	(2.98)			(22.2)
p-H ₂ NSO ₂ C ₆ H ₄ ^{4,e}	225	Chlorobenzene	100	41.56	4.61	4.50		17.87
				(41.72)	(4.74)	(4.42)		(18.8)
$Et_2Sn(O_2CR)_2$								
	81.C.)		00				÷	
0.01C,H. ^{4,b}	90-1 1-06	Petroleum ether	8 <u>8</u>	45.00	3.54		15.11	24.6
* •••0) ••)	•			(44.30)	(3.69)		(14.52)	(24.3)
CHCl ₂ ^{4,b}	123-4	Acetonc/n-hexane	88	22.44	2.80		30.94	27.8
				(22.19)	(2.77)		(32.78)	(27.4)
^a Reaction carried out at 2 ¹ reported ^{10, d} Reaction was ^a Same m.p. as previously 1	0°, using methyl carried out at 0° reported ¹¹ .	lene dichloride as solvent. ^b Tl using petroleum ether as solver	he ester was ol 1t. ° The ester p	btained on evap recipitated out 1	oration of the from the reactio	organic solvent n mixture, ^f S:	. ^c Same m.p. a calcd. 10.11, for	s previously ind 10.25%.

84

J. Organometal. Chem., 9 (1967) 83-88

TABLE 2

TETRAALKYL DISTANNOX	ANE ESTERS OF CA	RBOXYLIC ACIDS							
R	M.p. (°C)	Recrystallized from	Yield (%)	Sn-O-Sn Str.Vib. (cm ⁻¹)	%C found (calcd.)	%H found (calcd.)	%N found (calcd.)	%Cl found (calcd.)	%Sn found (calcd.)
$(Bu_2SnO_2CR)_2O$									
Cl ₂ CH ^{4,b}	192		81.5	610	32.64	4.90		18.73	32.3
p-NO ₂ C ₆ H ₄ " ⁶	187	Benzene/heptane	100	638	(32.55) 44.39	(5.15) 5.41	3.60	(19.23)	(32.2) 29.0
m-NO ₂ C ₆ H ₄ "."	148-9	Isooctane	67	630	(44.26) 44.24	(5.40) 5.44	(3.44)		(29.2)
3,5-(NO ₂) ₂ C ₆ H ₃ ^{4,6}	204-5	Benzene/isooctane	76	633	(44.26) 40.08	(5.40) 4.67	(3.44) (6.30		(29.2) 26.0
o-CIC,H, a,b	81-2	n-Hexane	16	630	(39.84) 45.78	(4.65) 5.48	(6.19)	0 17	(26.3)
	001	Mathematical Links hinds and	: 2		(45.43)	(5.55)		(8.94)	(30.0)
(110)11051190	061	petroleum ether	"	C70	49.12 (49.01)	0.10			30.3 (30.0)
p-NH2SO2C6H44	250-2		98	620	41.02	5.10	3,41		26.3
					(40.84)	(5.44)	(3.17)		(26.9)
$(Et_2SnO_2CR)_2O$									
C ₆ H ₅ eb	213-4/		88						
o-CIC ₆ H ₄ ".	171-2	Acetone	100	629	38.87	4.17		10.79	35.4
					(38.81)	(4.11)		(10.45)	(34.9)
CHCI ₂ ^{4,0}	164-5	n-Hexane	87	630	23.22	3.40		22.91	38.0
					(23.03)	(3.52)		(22.65)	(38.0)
^a Reaction was carried o mixture. ^d S: found 8.05	ut at 0°, using pet %, calcd. 7.28%	rroleum ether as solvent. ^b .e Reaction was carried c	The ester wa	as obtained on ev sing methylene	/aporation of 1 chloride as so	the solvent. ^c T lvent. ^f Same	l'he ester preci m.p. as previe	pitated from t ously reported	he reaction

TABLE 3

J. Organometal. Chem., 9 (1967) 83-88

immiscible solvents^{2,3}. The reactive organotin compounds used were trialkyl- or triaryltin chlorides, dialkyltin dichlorides and tetraalkyldichlorodistannoxanes, each of which, dissolved in an inert organic solvent, was added, at temperatures between $0-20^{\circ}$, under stirring to an aqueous solution of the alkali metal salt of the respective organic acid, dissolved in water. The reaction is very fast, being practically complete within about 1 or 2 minutes, as indicated by the amount of chloride ion liberated into the aqueous phase. The organotin esters either precipitated out from the reaction mixture or were recovered in high yields (80–100%) after evaporation of the organic layer (cf. Tables 1, 2, 3). By this method organotin esters of various structures were synthesized, some of which were already prepared by different procedures¹, while others are described here for the first time.

In order to find out whether side reactions occurred between the organotin halide and water, these substances were treated with water under the same experimental conditions. With tributyltin chloride and tetrabutyldichlorodistannoxane no reaction appeared to take place even after 1 hour, as concluded from the absence of chloride ions in the aqueous phase. With dibutyltin dichloride, tetrabutyldichlorodistannoxane was obtained in good yield, and the aqueous layer was found to contain chloride ions, the amount of which was in agreement with the following equation:

$$\begin{array}{ccc}
& & & & & & & & \\ & & & & & & \\ H_2O+2 & Bu_2SnCl_2 \rightarrow & Cl-Sn-O-Sn-Cl+2 & HCl \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\$$

This reaction is very fast, as indicated by the amount of the chloride ions liberated into the aqueous phase; it appears to be practically complete on mixing the reactants.

In spite of the fast hydrolysis of the organotin dichlorides in water, the reaction between dialkyltin dichlorides and alkali metal salts of carboxylic acids gave esters in high yields, having the structure: $R_2Sn(OOCR')_2$ and not that of tetraalkyl dicarboxy-distannoxanes: $R'CO_2$ -Sn R_2 -O-Sn R_2 -O_2CR'. This fact shows that the reaction of organotin halide with carboxylate anion is faster than that with water, even though the concentration of the latter, being the medium for the reaction, is much greater than that of the former. This is in accordance with the nucleophilic constants of carboxylate ions. Thus, *e.g.*, the acetate⁴ ion has a nucleophilic constant of 2.72. It may be mentioned here that the reaction between dimethyltin dichloride and some carboxylic acids in the presence of ammonia in aqueous solution was found to yield in many cases tetramethyldiacyloxydistannoxanes⁵.

The structure of the dialkyltin dicarboxylates was proved by elemental analyses, and by comparison of their physical properties, including m.p., mixed m.p. and IR spectra, with those of tetraalkyldiacyloxydistannoxanes prepared by the "interfacial" method using $(R_2SnCl)_2O$ as starting material. The most characteristic difference was the appearance of an absorption band near 600 cm⁻¹, known to originate from the Sn–O–Sn bond⁵ which appeared only in the compounds prepared from $(R_2SnCl)_2O$ (Fig. 1). Additional evidence for differences in structure was obtained from comparison of the X-ray scattering patterns of the two esters of *o*chlorobenzoic acid, dibutyltin bis(*o*-chlorobenzoate) and tetrabutylbis(*o*-chlorobenzoyloxy)distannoxane, synthesized from dibutyltin dichloride and tetrabutyldichlorodistannoxane respectively, which were recrystallized under the same condi-

Fig. 1. Infrared spectra of dibutyltinbis(p-nitrobenzoate) (below) and tetrabutylbis(p-nitrobenzoyloxy)-distannoxane (above).

tions. Without entering into the question of interpretation of these patterns, it is clear that they originate from different compounds.

EXPERIMENTAL

In the following a general procedure for the preparation of the organotin esters is given; the results being summarized in Tables 1, 2, 3.

The respective carboxylic acid (0.01 mole, or excess) was suspended or dissolved in water (30 ml) and neutralized to phenolphthalein with sodium hydroxide (6 N). A solution of the organotin halide in methylene dichloride (50 ml) or in petroleum ether (50 ml, 0.01 mole in the case of monocarboxylic acid and 0.02 mole in the case of dicarboxylic acid) was added with strong stirring at 0° or at room temperature. After stirring for 30 min the organic layer was dried and evaporated to yield the almost pure ester. In certain cases (see Tables) the ester separated out from the reaction mixture and was filtered, washed with water and recrystallized.

SUMMARY

The "interfacial polymerization" method was utilized for the preparation of

organotin esters. Trialkyl- or triaryl-tin chlorides, dialkyltin dichlorides and tetraalkyldichlorodistannoxanes, dissolved in an inert solvent, were reacted with an aqueous solution of an alkali metal salt of a mono- or dicarboxylic acid, to yield the organotin esters in high yields.

REFERENCES

- 1 R. K. INGHAM, S. D. ROSENBERG AND H. GILMAN, Chem. Rev., 60 (1960) 459.
- 2 P. W. MORGAN, Condensation Polymers by Interfacial and Solution Methods, Interscience, New York, 1965, pp. 1-113.
- 3 M. FRANKEL, D. GERTNER, D. WAGNER AND A. ZILKHA, J. Appl. Polymer Sci., 9 (1965) 3383.
- 4 C. G. SWAIN AND C. B. SCOTT, J. Am. Chem. Soc., 75 (1953) 141.
- 5 M. OHARA, R. OKAWARA AND Y. NAKAMURA, Bull. Chem. Soc. Japan, 38 (1965) 1379.
- 6 P. DUNN AND T. NORRIS, Australia, Commonwealth, Dept. Supply, Defence Std. Lab., Rept., 269 (1964); Chem. Abstr., 61 (1964) 3134.
- 7 Ref. 1, p. 501.
- 8 T. N. SRIVASTAVA AND S. K. TANDON, Indian J. Appl. Chem., 26 (1963) 171.
- 9 S. WEBER AND E. I. BECKER, J. Org. Chem., 27 (1962) 1258.
- 10 A. K. SAWYER AND H. G. KUIVILA, J. Org. Chem., 27 (1962), 610.
- 11 G. A. RAZUVAEV, N. S. VYAZANKIN AND O. A. SHCHEPETKOVA, Zh. Obshch. Khim., 3 (1961) 3762; Chem. Abstr., 57 (1962) 8597.
- 12 N. S. VYAZANKIN, G. A. RAZUVAEV, O. S. D'YACHOVSKAYA AND O. A. SHCHEPETKOVA, Dokl. Akad. Nauk SSSR, 143 (1962) 1348; Chem. Abstr., 57 (1962) 8599.
- J. Organometal. Chem., 9 (1967) 83-88